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Abstract: This article discusses the performance of Orthogonal Frequency Division Multiplexing (OFDM) in

the presence of cochannel interference (CCI) and fading, while multiple-input-multiple output (MIMO)

antenna technology is used. The transmitter and receiver weights of MIMO antenna arrays are adjusted jointly

according to Maximum-Ratio transmission (MRT) criterion. Inter-carrier interference (ICI) results from the

other sub-channels in the same data block of the same user is neglected. However, the effects of cross channel

ICI produced by CCI due to carrier frequency offsets (CFO) are considered in the precise interference model.

The error probability is calculated fast and accurately using a semi-analytical technique along with the Gauss

quadrature rule (GQR) approach based on the method of moments, which can approximate the statistical

distribution of the ICI. 
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I.    Introduction 

The bit rates achieved in cellular and local area wireless communications systems have increased rapidly.

The use of more complex modulation formats such as Orthogonal Frequency Division Multiplexing (OFDM)

and higher order QAM has satisfied this requirement. The OFDM technology has been proposed for a range of

standards and is widely applied to several existing high-speed wireless transmissions, such as Wireless Local

Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX) systems and Long

Term Evolution (LTE). 

The most adverse effect from mobile radio systems suffer is mainly multipath fading and interference,

which ultimately limit the quality of service offered to the users. With standard OFDM, very narrow

transmissions can suffer from narrowband fading and interference. The OFDMA technology, which

incorporates elements of time division multiple access (TDMA), allows subsets of the subcarriers to be

allocated dynamically among the different users on the channel. The ability to schedule users by frequency

provides resistance to frequency-selective fading. Therefore, it can achieve more frequency diversity.

Moreover, as long as the cyclic extension (CP) is longer than the memory of the channel, successive OFDM

symbols do not interfere with each other, and the receiver can be made very simple since no special processing,

such as equalization, is needed to remove the effect of intersymbol interference (ISI). Therefore, OFDM has

been shown its robustness in the presence of multipath dispersive propagation in high-speed wireless

communications. In order to further increase the available system capacity, spatial processing using antenna

arrays can be employed for supporting multiple users mobile radio system. The multi-input multiple-output

(MIMO) design, an attractive technology to combat narrowband fading and interference, is suitable for OFDM

transmission. Thus, MIMO-OFDM systems, which combine OFDM with MIMO, can promise significant

increases in system performance. 

In OFDM, uncorrected frequency errors will result in a loss of orthogonality among subcarriers and an

inter-carrier interference (ICI). The signal frequency must be tracked continuously [1]. The ICI is different

from the co-channel interference (CCI). The CCI is caused by reused channels in other cells which are allowed

to transmit simultaneously on the same Resource Block (RB), while ICI results from the other sub-channels in

the same data block of the same user. Even if only one user is in communication, ICI might occur, yet the co-

channel interference will not happen. Several methods can suppress ICI induced by carrier frequency offsets

(CFO)[1]-[7]. However, the effect of ICI may result from CCI, since CCI experiences different transmitter and

channel. This ICI-like effect of CCI usually was neglected by most of previous researches [7]. For a TDMA

system, the effects of cross channel inter-symbol interference (ISI) produced by CCI due to symbol timing

offset were considered and applied to performance analysis of MRT-MIMO systems [8]. In fact, the ICI

phenomenon in OFDM is the frequency-domain dual of intersymbol interference (ISI) that plagues single-
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carrier TDMA transmission over frequency-selective channels. However, frequency-selective ICI is assumed

to be independent fading from subcarrier to subcarrier.

This paper presents the performance of OFDM with MIMO antenna technology in the presence of CCI over

frequency-selective channels. The MIMO scheme is based on maximum ratio transmission (MRT) due to its

simplicity. Perfect frequency tracking is assumed, and therefore ICI associated with synchronization error for

the desired user vanishes. The focus is on the ICI effect generated by CCI due to the carrier frequency offsets

(CFO). Similar to the ISI case, to evaluate the average BER for high-order QAM modulation under fading

conditions by Monte Carlo simulations is exhaustive and time-consuming. We use a semi-analytical

technology, Gauss quadrature rule (GQR), which can approximate the probability density function (pdf) of

ICI-like CCI. 

II.   System Modeling

We first consider the OFDM system without the use of MIMO. For M-QAM, the transmitted complex

symbol is given by  having variance , where

 represent symbols on the in-phase and quadratue paths. With N

subcarriers, the modulated signals can be expressed as a vector . The

symbols are modulated with N subcarrier by passing a inverse discrete Fourier transform (IDFT) processor.

The discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) in an  matrix form

is given by

(1)

and 

. (2)

The IDFT signal can be written as . The sampled signal  then

passes through the parallel-to-series (P/S) circuit. The Cyclic Prefix (CP) of length P is added and then the

transmit OFDM signal can be rewritten as . 
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The multipath channel can be expressed as

(3)

where  represents the number of paths and  is the value of the lth delay. Each delay beam  has

Rayleigh-fading distribution and can be characterized as a complex envelope , where

 and  are zero-mean, i.i.d Gaussian random variables with variance . The number of paths  is

less than the length of CP. At the receiver, the CP of received signal is removed, then the signals are passed to

a DFT processor. The multipath channel can be expressed as a circular matrix 

. (4)

After the S/P and DFT processes, the received signal can be written as . Each

subcarrier through multipath can be transfered into a single path with a diagonal matrix . 

(5)

Parameters  are the channel responses corresponding to all subcarrier signals. They

are shown to be independent from subcarrier to subcarrier. Each has a Rayleigh distribution with a common

mean variance of .

Next, we consider the system with the use MIMO antenna technology. The MIMO system equipped with K

transmit and R receive antennas over a CCI channel is shown in Fig. 1. Each subcarrier signal transmitted by

the kth antenna is multiplied by a controllable complex weight vector . For convenience, the MIMO signal

can be expressed in a matrix form. The channel gain of the nth subcarrier signal can be defined as a 
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where  represents the channel parameter of the nth subcarrier between the kth transmit antenna and the

mth receive antenna. The  weight vector at the transmitter and the  weight vector at the receiver are

defined as  with  (i.e. average transmit power is

restricted to be constant) and , respectively. By exploiting the

correlation between adjacent subcarrier channels, it is possible to use the same weight for a number of

subcarriers. 

In a MIMO system employing a maximum-ratio transmission (MRT) scheme, signals are combined in such

a way that the overall output signal-to-noise (SNR) of the system is maximized, where CCI is ignored. The

input noise is a zero-mean white Gaussian noise with double-sided power spectral density of  W/Hz. Based

on the Maximum-ratio-combining (MRC) scheme, we have , where  denotes the

complex conjugate operation. It follows that the output SNR is given by 

(7)

where  is the conjugate transpose operator. Maximizing SNR can be accomplished by choosing the

weight vector  that maximizes the quadrature form  subject to the constraint

. 

It is known that  can be maximized by finding the maximum eigenvalue of 

Hermitian matrix . Based on this fact, we can choose the transmitting weight vector as

, the unitary eigenvector corresponding to the largest eigenvalue, , of the

quadrature form . The corresponding maximum SNR is given by . Choosing

this receive antenna vector results in .
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Fig. 1 MRT-MIMO OFDM (two transmit antennas and two receive antenna, one CCI)
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Since the CCI transmit weights are not controlled by the desired receiver, the transmit weights of CCI can

be neglected. Similarly, the channel complex gain for I cochannel interferers on the nth subchannel can be

written in a  matrix form as 

, (8)

where  represents the channel parameter on the mth receive antenna for the ith interfering signal. The

symbol and channel of a CCI is indexed by a bar. 

The average signal-to-noise ratio (SNR) of the OFDM received signal can be derived as

(9)

The average signal-to-interference ratio (SIR) is derived as

(10)

where  and  represent the standard deviations of the Gaussian random variables on the lth delay beam

for the desired signal and interfering signals. Equal powers are assumed for the interfering signals.
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simulations, especially in the fading case. We use the semi-analytic approach for performance estimation. Such

an approach avoids a Gaussian characterization of interference, which is not realistic because interference has

the effects of waveform, modulation and fading. Semi-analytic error probability estimation can be sped up

considerably by combining the transmitter, the channel, the receiver into one single response. 

1.1 Precise Interference Model

For the MIMO-OFDM case with a precise CCI model, the estimate of the symbol on the lth subcarrier can

be expressed as

(12)

where  which is equal to ,  the largest eigenvalue of the matrix . We

define the symbol of the nth subchannel for the ith CCI as . The combined ICI in the

in-phase rail can be denoted by

(13)
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We define  where  and  have equal variance, . Since the

distribution density functions of quantities  and  are symmetric to zero and are identical, it has been shown

that the average symbol error probability  can be bounded tightly by

 . (18)

Because  is a random variable whose distribution is not known explicitly, the evaluation of  is

performed by computing the conditional error probability of each of all possible sequences of CCI, and then

averaging over all those sequences. For (18),  is given by .
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dominant terms be computed first and rolloff error be minimized. A recursive algorithm which can be used to

determine the moments of all order of .

1.2 Gaussian Interference Model

To simplify the analysis and make it both computationally and mathematically tractable, an alternative

approach, Gaussian interference model, for representing the cochannel interference is often used. A Gaussian

model assumed that all interfering signals have no CFO effect relative to the desired signal and did not

consider cross-channel ICI effects. In this model, the interference contribution is represented by a Gaussian

noise with mean and variance equal to the mean and variance of the sum of the interfering signals. In our

simulation, the accuracy is assessed by comparing their BER performances with precise BER results.

Using the Gaussian interference model, the MRT scheme is optimum for the MIMO system. The average

power of each interferer received by the mth receive antenna element is 

 (21)

where  is assumed to be Gaussian distributed and has power spectrum density . Thus, the SIR ratio per

diversity branch can be defined as 

(22)

The output power of combined interference is then given by

. (23)

The total output power of the interference plus noise is , where  is given in (17). The symbol

error probability for fading Gaussian interference is given by

(24)

where  represents the variance in each rail. Unlike the precise CCI model, the interfering signal

becomes uncorrelated from branch to branch under this assumption. As a result, the Gaussian interference

model usually overestimates the effect of CCI in nonfading channel. The accuracy of the Gaussian interference

model usually depends on the statical characteristics of the channel and the MIMO scheme. 

IV.   Simulation Results

Computer simulations are conducted to demonstrate the performance of the MRT-MIMO OFDM with 4-

QAM modulation. Herein, we consider the case with a single cochannel interferer and the case with three
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interferers. We use a 10-order GQR that needs 20 moments of 82 joint interference complex terms. Both the

desired signal and CCI are subject to  frequency-selective fading. Independent Rayleigh fading from

subcarrier to subcarrier is assumed. Parameter  of CFO is fixed at  and the SIR is set into 10dB. 

The simulation results of a MRT-MIMO system with three receive antennas for the interference with and

without CFO are shown in Figs 2. Using the MRT approach, CCI is not eliminated and then the error rate is

irreducible due to the residual CCI. The performance with a CFO is worse and appears a higher irreducible

floor due to the cumulative ICI-like CCI. A comparison of the precise CCI model against the Gaussian CCI

model is shown in Figs 3. It is seen that the curves of Gaussian CCI and the precise CCI appear different with

the increase of the transmit and receive antennas. The Gaussian CCI model always overestimates the

performance. We note that the performance with  is better than that with . This is due to the fact

that with total interference power equally distributed among three cochannel interferers, the probability that at

least one of the interferers is strongly faded is greater in the case of multiple interferers, thus leading to a

smaller error rate. In general, the assumption of zero-CFO interference is optimistic, while the Gaussian

interference is too pessimistic.
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V.   Conclusions

In this paper, we have analyzed the performance of MRT-MIMO based OFDM systems subject to

cochannel interference (CCI) operating frequency-selective fading channels. The use of precise CCI model and

Gaussian Quadrature rule (GQR) provides significant improvement in the performance analysis. The results of

this study are expected to lead to a better understanding of the effects of interference, and then to optimize

spectrum reuse in MIMO-OFDM systems. 

VI.   Reference

  [1]. J. Hoseyni and J. Ilow, “OFDM Carrier Frequency Offset Correction Using Zero-Crossings of the Inter-
Carrier Interference Based Cost Function,” 2012 8th International Symposium on Communication
Systems, Networks & Digital Signal Processing, pp. 1–5, 2012.

  [2]. K. Sathananthan and C. Tellambura, “Probability of Error Calculation of OFDM Systems With
Frequency Offset,” IEEE Transactions on Communications, vol. 49, no. 11, pp. 1884–1888, Nov.2001.

  [3]. H. Cheon and D. Hong, “Effect of Channel Estimation Error in OFDM Based WLAN,” IEEE
Communications Letters, vol. 6, no. 5, pp. 190-192, May 2002.

  [4]. X. Li and J.A. Ritcey, “Maximum-Likelihood Estimation of OFDM Carrier Frequency Offset for Fading
Channels,” Conference Record of the Thirty-First Asilomar Conference on Signals, Systems &
Computers, vol. 1, pp. 57-61, 1997.

  [5]. D.D. Huang and K.B. Letaief, “Enhanced Carrier Frequency Offset Estimation for OFDM using
Channel Side Information,” IEEE Transactions on Wireless Communications, vol. 5, no. 10, pp. 2784-
2793, Oct. 2006.

  [6]. L. Rugini and P. Banelli, “BER of OFDM Systems Impaired by Carrier Frequency Offset in Multipath
Fading Channels,” IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 2279-2288, Sep.
2005.

  [7]. Bo-Seok Seo and Seong-Gon Choi and Jae-Sang Cha, “Maximum Ratio Combining for OFDM Systems
with Cochannel Interference,” IEEE Transactions on Consumer Electronics, vol. 52, no. 1, pp. 87-91,
2006.

  [8]. T.K.Y. Lo, “Maximum Ratio Transmission,” IEEE Transactions on Communications, vol. 47, no. 10,
pp. 1458-1461, Oct. 1999.


